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Abstract 
We consider a network localization problem in which a network 
of multiple nodes needs to estimate their positions based on 
measured bearing vectors and exchanging several variables. We 
propose a fixed-time bearing-based estimation law, which 
guarantees convergence of position estimates in a finite-time 
independently on the initial estimations. Simulation results are 
also provided to support the theoretical results. 
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1. Introduction 
In recent years, formation control and network 

localization problems have attracted a lot of research 
interests [1, 2]. In a formation control problem, a group 
of moving autonomous agents needs to achieve a desired 
formation shape via controlling some geometric variables 
regarding other agents. As a dual problem to formation 
control, in a network localization problem, there is a set 
of stationary sensor nodes, and each node would like to 
estimate its position based on sensing and exchanging 
some variables with a few neighbor nodes.  

The existing works in the literature mainly focus on 
designing control/estimation laws which require less 
sensing and communication resources between the 
agents/nodes. To this end, the distance-based and the 
bearing-based approaches are advantageous in 
comparison with the position-based and displacement- 
based approaches [3, 4]. While the distance-based 
approach has been studied extensively for more than a 
decade [3], the bearing-based approach has just got a 
considerable attention in recent years since bearing-only 
control laws can be implemented using only a camera 
mounted on each agent. 

In this paper, we confine our attention on a 
bearing-based network localization problem. It is worth 
noting that asymptotic convergence network localization 
control laws have been proposed in [5]. Furthermore, to 
enhance the convergence rate, finite-time bearing-only 
formation control laws have been proposed in [6-8] so 
that the agents can achieve a target formation after a 
finite time. Since formation control and network 
localization are dual problems, it is quite straightforward 
to apply the finite-time formation control laws in [7] to 
the network localization problem. However, a 
disadvantage of finite-time control laws is that the (finite) 

convergence time depends on the initial condition of the 
system. As a result, although the target formation in [7, 8] 
can be achieved in a finite time, it is no guarantee that at 
a specified time T , the agents are in the desired 
formation shape or not. This drawback of finite-time 
controllers can be remedied by the fixed-time control 
design method in [9]. In simple words, a fixed-time 
controller guarantees convergence of the system after a 
finite time T , for all initial conditions. Thus, the main 
objective of this paper is designing a bearing-only control 
law that solves the bearing-based network localization 
problem in a fixed time. The fixed-time analysis is given, 
and simulation results are also provided. 

The remainder of this paper is organized as follows. 
Section 2 reviews the background on bearing rigidity, 
bearing-only based network localization, and fixed-time 
stability condition. In Section 3, we propose the control 
law and show that it guarantees a fixed-time 
convergence. Section 4 contains simulation results and 
Section 5 concludes the paper. 

2. Preliminaries 
2.1. Fixed-time Stability 

Consider the following system 

0
( , ),  (0)x f t x x x= =   (1) 

where nx Î   is the vector of system states, 
and : n nf

+
´     is a nonlinear function. If 

( , )f t x  is discontinuous, solutions of (1) are understood 
in Filippov sense [10]. Assume that the system (1) has 
zero equilibrium point. 
Definition 2.1 ([11]) The equilibrium point 0x =  of 
the system (1) is globally finite-time stable if it is 
globally asymptotically stable and any solution 

0
( , )x t x  

of (1) reaches 0 at some finite time moment, i.e. 

0 0
( , ) 0, ( )x t x t T x= " ³ , where : {0}nT

+
 È   is 

the so-called settling-time function. 
Definition 2.2 ([9]) The equilibrium point 0x =  of the 
system (1) is said to be globally fixed-time stable if it is 
globally finite-time stable and the settling-time function 

0 max
( )T x T£ , 

0

nx" Î  . 
Definition 2.3 ([12]) If there exists a continuous radially 
unbounded function : {0}nV

+
 È   such that 

1. ( ) 0 0V x x=  = ; 
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2. Any solution ( )x t  of (1) satisfies the inequality 
* ( ( )) ( ( )) ( ( ))p qD V x t V x t V x ta b£- -  for some 

, 0a b > , 1
1

2
p

m
= - , 1

1
2

q
m

= + , 1m > , 

then the origin is globally fixed-time stable for system (1) 
and the following estimate holds: 

max
:T

pm

ab
= , 

0

nx" Î  . 

2.2. Bearing-Based Network Localization 
Consider a sensor network of n  nodes located at 

 ( 2,  3)d

i
p dÎ = , 1,...,i n= , in the d-dimensional 
global reference frame. Assume that each node does not 
know its global position, and thus it has an estimate 
ˆ d

i
p Î  . To localize the position, we further assume that 
each node has its own sensing and communication 
capabilities. The sensing and communication topologies 
between the nodes are characterized by a connected, 
undirected graph ( , )G V E= , where {1,..., }V n=  is 

the node set, 
1

{ ,..., }
m

E e e V V= Ì ´  is the edge set 
[13]. An edge ( , )i j EÎ  implies that two nodes i  and 
j  can exchange their position estimates with each other, 
and they can also sense the directional information (or 
the bearing vector) with regard to each other. 
Specifically, if ( , )

k
e i j E= Î , node i (1 i n£ £ ) can 

sense the bearing vector  

( )j i ij k
ij k

kj i ij

p p z z
g g

zp p z

-
= = = =

-
 

to nodes j , and node j  can sense the bearing vector  

( )i j

ji ij

i j

p p
g g

p p

-
= = -

-
 

to node i . Here 
k ij
z z=  is the displacement vector 

between two nodes i  and j . The projection matrix 
associated with the bearing vector 

ij
g  is defined as 

ij

T

g d ij ij
P I g g= - . Matrix 

ijg
P  projects a vector into the 

orthogonal complement space of { }
ij

span g . It is not 

hard to verify that 2

ij ij ij

T

g g g
P P P= = , 

ijg
P is positive 

semidefinite, and ( ) ( )
ijg ij

Null P span g= . 

Let { | ( , ) }
i
N j V i j E= Î Î  be the neighbor set 

of node i , then, the locally available information of a 
node i  includes its estimated position 

î
p , the set of 

measured bearing vectors { }
iij j N

g
Î

, and the estimated 

positions ˆ{ }
ij j N

p
Î

 received from its neighbor nodes via 

wireless communication (see Fig. 1). Consider an 
arbitrarily orientation of edges in G , that is, for each 
edge ( , )

k
e i j= , we assign i  as the starting vertex, j  

as the  

Fig. 1: Nodes i and j measure the bearing vectors 
ij
g , 

ji
g  

and communicate their estimated positions 
î
p ,

ĵ
p . 

 
end vertex and the edge is directed from i  to j . The 
incidence matrix [ ]

ij m n
H h

´
=  characterizes the relation 

between vertices and edges in G  corresponding to this 
orientation is defined as follows: 

1, if ( , ),

1, if ( , ),

0, otherwise.

k

ki k

e i j

h e j i

ìï- =ïïï= =íïïïïî

 

If the graph G  is connected, we always have 
( ) (1 )

n
Null H span= . Let 

1
[ ,..., ]T T T

m
z z z= , then there 

holds ( )
d

z H I p Hp= Ä = , where ‘ Ä ’ denotes the 
Kronecker product. 

A network, denoted by ( , )G p , is described by a 

graph G  and a configuration 
1 1

[ ,..., ]T T Tp p p=  of G  
in the space. The rigidity matrix of ( , )G p  is defined as 

1

( ) ( ) ( ) .
k

m

g

B d g

g

P

R p H I diag P H

P

é ù
ê ú
ê ú= Ä =ê ú
ê ú
ê úë û

   (2) 

where ( )
kg

diag P  is the block diagonal matrix of m  

projection matrices 
1
,...,

mg g
P P . For any bearing rigidity 

matrix, we have ( ( )) ([1 ,  ])
B n d

Null R p Range I pÊ Ä .  
This paper aims to design a position estimation law 

for each node based on only local information so that 
they can determine a configuration * * *

1
ˆ ˆ ˆ[ ,..., ]T T T

n
p p p=  

satisfying all measured bearing vectors between the 
agents in a fixed time ( *p̂  is different from p  by only a 
translation and a scaling). In other words, we would like 
to design update laws for ˆ ( )

i
p t  so that 

ˆ ˆ( ) ( )
ˆ ( )

ˆ ˆ( ) ( )

j i

ij ij

j i

p t p t
g t g

p t p t

-
= =

-
, , ,  i j V i jÎ " ¹ ,  (3) 

max
0t T" ³ > , and 

max
T  is independent on the initial 

estimations (̂0)p . From now on, we will refer to this 
problem as the fixed- time bearing- based network 
localization problem.  

In order to solve the problem, the following 
assumption on the network ( , )G p  will be adopted: 
Assumption 2.4 The network ( , )G p  is infinitesimally 
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bearing rigid in d , or i.e., we have 
( ) ([1 ,  ])
B n d

Null R Range I p= Ä . 
In this paper, we would like to keep the background 

on bearing rigidity theory as minimal as possible. For 
further results on bearing rigidity theory, the readers are 
referred to [14].  

3. Fixed-Time Bearing-Based Network 
Localization 

The proposed control law  
For a vector 

1
[ ,..., ]T d

d
v v v= Î  , we will denote 

  
1 1

( ) [sgn( ) | | ,..., sgn( ) | | ]T
d d

sig v v v v va a a=  

and  
1

| | [| | ,...,| | ]T
d

v v va a a= .  
The following position estimation law is proposed for 
each node 1,...,i n= : 

( )ˆ ˆ
ˆ ( ) ( )

ij ij iji
i g g ij g ijj N
p P sig P g sig P ga b

Î
= +å ,    (4) 

where (0,1)a Î  and 2 1b a= - >  are two control 
parameters. Note that in Eqn. (4), 

îjg
P can be calculated 

from 
î
p  and the communicated variables ˆ

j
p , and 

ij
g  

are measured by agent i . We can rewrite the estimation 
law (4) in matrix form as follows: 

ˆ ˆ ˆ
ˆ ( )( ( ( ) ) ( ( ) ) )

k k k

T

g g g
p H diag P sig diag P g sig diag P ga b= + , (5) 

where 
1

[ ,..., ]T T T

m
g g g= , and 

1
ˆ ˆ ˆ[ ,..., ]T T T

m
g g g= . Let 

1

1 1
ˆ ˆ ˆ(1 )

n
T

i n d
i

p p I p
n n=

= = Äå , ˆ ˆ ˆ1r p p= - Ä , and 

ˆ ˆs r= be the estimated centroid and estimated scale, 
respectively, we have the following lemma: 
Lemma 3.1 The estimated centroid is invariant while the 
scale under the estimation law (5). 
Proof. The result follows from 

ˆ

ˆ

1 1
ˆ ˆ( ) (1 ) (1 ) ( )( )

1
  ( 1 ) ( )( ) 0,

k

k

T T T
n d n d g

T

n d g

p t I p I H diag P
n n

H I diag P
n

= Ä = Ä

= Ä =

  


 

ˆ

ˆ

ˆ ˆ( 1 ) ( )( )
(̂ )

ˆ ˆ1

ˆ( 1 ) ( )( )ˆ ˆ( )( )
 0,

ˆ ˆ ˆ ˆ1 1

k

k

T T

g

TT T
gB

p p H diag P
s t

p p

H p diag Pp R p

p p p p

- Ä
=

- Ä

Ä
= - =

- Ä - Ä





 

where ‘  ’ is 
ˆ ˆ

( ( ( ) ) ( ( ) ) )
k kg g

sig diag P g sig diag P ga b+ .    ■ 

From the invariance of the estimated centroid and scale, 
we can then have the following lemma regarding the 
equilibrium points of (5). 
Lemma 3.2 The system (5) has two isolated equilibria: 

*ˆ ˆp p=  corresponding to ˆ , 1,...,
k k
g g k m= " = , and 

ˆ ˆp p ¢= corresponding to ˆ , 1,...,
k k
g g k m= - " = . 

Proof. From equation (̂ ) 0p t = , it follows that  

* *
ˆ ˆ ˆ

*
ˆ ˆ ˆ

1

*
ˆ ˆ ˆ

1

ˆ ˆ ˆ ( )( ( ( ) ) ( ( ) ) )

ˆ     ( ( ) ( ) )

ˆ     ( ( ) ( ) ) 0,

k k k

k k k

k k k

T T T

g g g

m
T

k g g k g k
k
m

T

k k g g k g k
k

p p p H diag P sig diag P g sig diag P g

z P sig P g sig P g

z g P sig P g sig P g

a b

a b

a b

=

=

= +

= +

= + =

å

å



 

which implies that ˆ , 1,...,
k k
g g k m=  " = . The 

remaining proof follows from Assumption 2.4 and a 
similar reasoning as in [Thm. 10, 14].         ■ 
Let *

1
ˆ ˆ[ ,..., ]T T T

n
p pd d d= = - , and * *ˆ ˆ ˆ1r p p= - Ä , 

since the centroid is invariant, it follows that 
*ˆ ˆr rd = - .  

Thus, we can rewrite (5) as 
ˆ ˆ ˆ

( )( ( ( ) ) ( ( ) ) )
k k k

T
g g g

H diag P sig diag P g sig diag P ga bd = + , (6) 

Moreover, as the scale is invariant, it follows that d  
evolves on the sphere * *ˆ ˆ ˆr r rd + = =  and (6) has 

two equilibria in this sphere: 0d =  and *ˆ2rd = - . 
Next, we examine the stability of these equilibria. In the 
analysis, we will always assume that 
ˆ ˆ( ) ( ), 0
i j
p t p t t¹ " ³  so that the vectors 

îj
g  are always 

defined.  
Theorem 3.3 The equilibrium 0d = of (6) is 
asymptotically stable. 

Proof. Consider the Lyapunov function 
21

2
V d= , 

which is positive definite, radially unbounded, and 
continuously differentiable. We have 

*

ˆ ˆ ˆ

*
ˆ ˆ ˆ

*

ˆ ˆ ˆ
1

* 1

ˆ ˆ

ˆ ˆ( ) ( )( ( ( ) ) ( ( ) ) )

ˆ ( )( ( ( ) ) ( ( ) ) )

ˆ ( ( ) ( ) )

ˆ (| [ ] | | [ ] |

k k k

k k k

k k k

k k

T

T T

g g g

T T

g g g

m
T

k k g g k g k
k

k g k i g k i

V

p p H diag P sig diag P g sig diag P g

p H diag P sig diag P g sig diag P g

z g P sig P g sig P g

z P g P g

a b

a b

a b

a b

d d

=

+

=

= - +

= - +

= - +

= - +

å

 

1

1 1

) 0,
m d

k i

+

= =

£å å

 

and the inequality holds if and only if 
ˆ , 1,...,
k k
g g k m=  " = , or i.e., 0d =  or *ˆ2rd = - . 

By LaSalle’s invariance principle, *ˆ{0, 2 }rd  - . Since 
two equilibria are isolated, consider a neighborhood of 

0d = which does not contains *ˆ2rd = - , then 0V < , 
for all 0d ¹  in that neighborhood. Thus, 0d =  is 
locally asymptotically stable.      ■ 

For the equilibrium *ˆ2rd = - , we consider the 

function 
2

*1
ˆ2

2
V rd= +  and follow a similar proof as 

in Theorem 3.3, it can be proved that 0V ³ , and thus 
*ˆ2rd = -  is unstable. We thus conclude that 0d   

asymptotically if *ˆ(0) 2rd ¹- . 
Before showing fixed-time stability of the equilibrium 

0d = , we state the following lemma, whose proof is 
similar to [14] and will be omitted. 
Lemma 3.4 Under the estimation law (6), the following 
inequality holds 
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ˆ ˆ2 1,  1,..., .
k
z s n k m£ - =         (7) 

We can now prove the main theorem of this paper. 
Theorem 3.5 Suppose that *ˆ(0) 2rd ¹- , the 
equilibrium 0d =  of (6) is locally fixed- time stable. 
Proof. Consider an arbitrarily closed neighborhood D of  

0d =  which does not contain *ˆ2r- . Let 
*

1,...,
ˆmin ( )

k m
z te

=
= , we can write 

1 1
ˆ ˆ

1 1

(| [ ] | | [ ] | )
k k

m d

g k i g k i
k i

V P g P ga be + +

= =

£- +åå . 

For 0 r l< < , and dmx Î  , we have the following 

norm inequality 
1 1

( ) r l
l r l
x x dm x

æ ö÷ç ÷ç - ÷ç ÷÷çè ø£ £ . Thus, for 

1 1 2a< + <  we have  
1

2
1 2

ˆ ˆ
1 1 1 1

| [ ] | | [ ] |
k k

m d m d

g k i g k i
k i k i

P g P g

a

a

+

+

= = = =

æ ö÷ç ÷³ ç ÷ç ÷çè ø
åå åå ,   (8) 

and for 2 1b< + , there holds 
1

2
1 1 2

ˆ ˆ
1 1 1 1

| [ ] | ( ) | [ ] |
k k

m d m d

g k i g k i
k i k i

P g dm P g

b

b b

+

+ -

= = = =

æ ö÷ç ÷³ ç ÷ç ÷çè ø
åå åå (9) 

Moreover, following a similar proof as in [Thm. 5, 8], we 
have 

( )

2

ˆ ˆ
1 1 1

2
1 1

2
1

2

2

| [ ] |

1
ˆ ˆ ˆ ˆ      

ˆ

1
ˆ ˆ      ( ) ( )

ˆ(2 1)
1

      ( )
ˆ(2 1)

      2 ,

k k

k k

k

k

m d m
T

g k i k g k
k i k

m m
T T

k g k k g k
k k

k

m

k k g k k
k

T T

g

P g g P g

g P g z P z
z

z z P z z
s n

H diag P H
s n

V

d d

c d c

= = =

= =

=

=

= =

æ ö÷ç ÷³ - -ç ÷ç ÷çè ø-

³
-

³ =

åå å

å å

å  

where 
2

2 0

2

( )
0

ˆ(2 1)

d B
R

s n

l f
c += >

-
, 

2
( )

d B
Rl

+
 is the smallest 

positive eigenvalue of ( )
B
R p , and 

0
0f >  is a constant 

that only depends on D. The last derivation step is similar 
to [Thm. 5, 8] and has been omitted for brevity. Thus, 
combining this with (8) and (9), it follows that 

1 1 1 1
12 2 2 2(2 ) ( ) (2 )V V dm V

a a b b
be c e c

+ + + +
-£- - .   (10) 

Let 1 1
,  

2 2
p q

a b+ +
= = , 

1

2
1

(2 )k
a

e c
+

= , and 

1
1 2

2
( ) (2 )k dm

b
be c

+
-= , then based on Lemma 2.1, 

0d =  is a fixed-time stable equilibrium of (6), i.e., we 
have 

max
( ) 0,  t t Td = " ³ , where  

max 2 1

4 21 2

( ) ( )

2 2 (2 ) ( )

T
k k dm

a b b

p b a p b a

e c
+ + -

- -
= = .     ■ 

 

 
4. Simulation Results 
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y
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2 4 6 8

1 3 4 7
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Fig. 2: The graph G  and the true configuration p  of  

10 agents in 2 . 
 

In this section, we consider a sensor network 
consisting of 10 nodes in the two-dimensional space. The 
nodes’ true positions and the graph describing the sensing 
and communication topologies between them are shown 
in Fig. 2. The nodes have initial estimations (̂0)p  which 
is graphically given in Fig. 3. They update their 
estimations under the estimation law (4) with 

0.6,  1.4a b= = . 
Simulation results are shown in Fig. 3. It is observed 

that under the estimation law (4), (̂ )p t converges to a 

final configuration *p̂  differing from the true 
configuration by translations and a scaling after about 
20s. To compare, we also conduct a simulation of the 
same nodes under the unadjusted estimation law [14]: 

ˆ
ˆ

ij

i

i g ij
j N

p P g
Î

= -å .  (11) 

Simulation result in Fig. 4 shows that after 25s, the 
estimated configuration (̂ )p t  still does not converge to 

*p̂ . 

5. Conclusions 
In this paper, we proposed a fixed-time network 

localization using only bearing measurements. 
Mathematical analysis and simulations are provided to 
show the fixed-time convergence of the position 
estimates under the proposed estimation law. Fixed-time 
convergence is a powerful property that has not been 
applied much in multi-agent systems. In future work, we 
would like to design fixed-time controllers in other 
problems in multi-agent systems. 
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Fig. 3: Initial estimations, trajectories of estimated positions, and bearing errors under estimation law (4). 

Fig. 4: Initial estimations, trajectories of estimated positions, and bearing errors under the estimation law (11). 


